An octobot with fluorescently dyed fugitive inks (red, not auto-evacuated) and hyperelastic actuator layers (blue) fabricated by molding and EMB3D printing.
Photo credit: Lori Sanders/Harvard University
Harvard University researchers have demonstrated the first autonomous, untethered, entirely soft robot. This small, 3D-printed robot – nicknamed the octobot – could pave the way for a new generation of completely soft, autonomous machines.
Soft robotics could revolutionize how humans interact with machines. But researchers have struggled to build entirely compliant robots. Electric power and control systems – such as batteries and circuit boards – are rigid. Until now, soft-bodied robots have been either tethered to an off-board system or rigged with hard components.
Robert Wood, Charles River Professor of Engineering and Applied Sciences; and Jennifer A. Lewis, Hansjorg Wyss Professor of Biologically Inspired Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), led the research. Lewis and Wood are also core faculty members of the Wyss Institute for Biologically Inspired Engineering at Harvard University.
“The struggle has always been in replacing rigid components like batteries and electronic controls with analogous soft systems and then putting it all together,” Wood says. “This research demonstrates that we can manufacture the key components of an entirely soft robot, which lays the foundation for more complex designs.”
“Through our hybrid assembly approach, we were able to 3D print each of the functional components required within the soft robot body, including the fuel storage, power, and actuation, in a rapid manner,” Lewis says. “The octobot is a simple embodiment designed to demonstrate our integrated design and additive fabrication strategy for embedding autonomous functionality.”
Since octopuses can perform feats of strength and dexterity with no internal skeleton, they have been a source of inspiration in soft robotics.
Harvard’s pneumatic-based octobot is powered by gas under pressure. A reaction inside the bot transforms a small amount of liquid hydrogen peroxide into a large amount of gas, which flows into the octobot’s arms and inflates them like a balloon.
“Fuel sources for soft robots have always relied on some type of rigid components,” states Michael Wehner, a postdoctoral fellow in the Wood lab and co-first author of the paper. “The thing about hydrogen peroxide is that a simple reaction between the chemical and a catalyst – in this case platinum – allows us to replace rigid power sources.”
To control the reaction, the team used a microfluidic logic circuit based on work by co-author and chemist George Whitesides, the Woodford L. and Ann A. Flowers University Professor and core faculty member of the Wyss. The circuit, a soft analog of a simple electronic oscillator, controls when hydrogen peroxide decomposes to gas in the octobot.
“The entire system is simple to fabricate. By combining three fabrication methods – soft lithography, molding, and 3D printing – we can quickly manufacture these devices,” says Ryan Truby, a graduate student in the Lewis lab and co-first author of the paper.
The simplicity of the assembly process paves the way for more complex designs. Next, the Harvard team hopes to design an octobot that can crawl, swim, and interact with its environment.
The paper was co-authored by Daniel Fitzgerald of the Wyss Institute and Bobak Mosadegh of Cornell University. The research was supported by the National Science Foundation through the Materials Research Science and Engineering Center at Harvard and by the Wyss Institute.
Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) www.seas.harvard.edu
Wyss Institute for Biologically Inspired Engineering at Harvard University www.wyss.harvard.edu
The VersaCELL robotic machine tending cell reduces manpower requirements for a two-machine production center by as much as 66%. The operator loads parts onto the included conveyor or drawer system and the VersaCELL then performs the following operations for up to two machine tools:
Unloading parts from conveyor or drawer system
Loading parts into machine tool using customizable end-of-arm tooling
Unloading parts whenmachining operation is complete
Transferring parts to second operation for additional machining
Stacking finished parts in drawer or on conveyor to return to operator
If the drawer system is used, multiple parts can be staged for machining, allowing the operator to complete other tasks while the VersaCELL is working.
A broad range of connectors are available for medical, consumer, industrial, and Internet of Things (IoT) applications in which small size and high-reliability performance are critical.
A broad range of connectors are available for medical, consumer, industrial, and Internet of Things (IoT) applications in which small size and high-reliability performance are critical. Available as a physical sample and an interactive online simulation, the interconnect sample kit consists of a printed circuit board (PCB) loaded with 15 examples of board-to-board, wire-to-board, battery, and pogo pin connectors, including several of the STRIPT UL-approved, insulator-less single contacts.
The physical version of the sample kit features a white lid designed to simulate a replaceable or disposable module, so users can experience how AVX’s vertical-mate battery connectors eliminate angular insertion in pluggable module applications. Also with the lid, users can see how pogo pin contacts mate with modules in cradle and docking applications, where they can function as the charging, data transfer, or programming interface to a portable device.
The virtual interconnect sample kit allows users to navigate the board with their cursor, and provides brief descriptions of each connector category, summary information about each series, and links to each product page.
A digital health revolution is being fueled primarily by the growing use of wearables and consumer devices that gather health metrics. Connected medical devices are not far behind. We have already seen Bluetooth-connected glucose meters, blood pressure equipment, and scales. In the last year, several announcements along these lines have come from traditionally conservative big pharma providers in respiratory diseases. A sudden rush has most major pharmaceutical companies embarking on product development or trials with connected inhalers, racing to launch commercially. While this appears to be a surprise, a closer look indicates a natural evolution.
The healthcare industry is changing in the U.S. and elsewhere. Rising costs have forced governments to take action, payment systems are changing, and payers have increasingly started demanding evidence for therapy and medical procedures. As pressure mounts for the industry to demonstrate cost efficiency and outcome improvements, companies are turning to technology. Given that pharma producers typically take five-to-eight years to bring new inhalers to market, early exploration of new technology and connectivity solutions is required.
Home use medical devices – and to a large extent, clinical use devices – must be designed to accommodate or adapt to changing environments. Picking components and making technology choices for products that will only come to market three-to-five years later – or longer in the case of drugs – pose significant challenges. Where regulation is involved, keeping products relevant and minimizing chances of obsolescence are critical.
Finally, paths to market, target buyers, and revenue models for connected systems may not be the same as before. So, a strong, long-term strategy and solution roadmap should be put in place prior to making platform decisions or embarking on any design/development, and then revisited and updated often.
Identify the value proposition
A connected health solution may not be appropriate for every drug or for every medical device. Identify the right drug candidate or disease state to identify target users, and determine what value you can provide them via a connected health solution. If suitable value cannot be identified for at least two stakeholders within the ecosystem, it’s unlikely the solution will be commercially viable.
The path to revenue will dictate platform architecture, design, and required features. The business model must be constructed and validated early on, and key revenue-generating items must be identified to enable appropriate trade-offs to be made later. Connected systems lend themselves well to service-based revenue models, based on usage as well as analytics. So, the sources of revenue may be indirect and not strictly limited to device sales.
Design the experience
User engagement is governed to a large degree by the user experience and value delivered by the solution. Solutions that require regular interaction must fit seamlessly into people’s lives and should deliver something meaningful. Features in the device, app, or web service must follow a detailed mapping of the user journey with an understanding of what different stakeholders might want from the system. What works for one individual may not work for another.
With smartphones and apps, people have come to expect personalization with everything they use, including healthcare products. Connected health solutions must balance user-driven customization and a sufficiently standard out-of-the-box experience. Designers should consider the target audience, their skill level, dexterity, and tech savviness as well as the amount of time they are likely to spend customizing the device. For example, surgeons who are typically very busy are less likely to commit to designing their own dashboards, compared with family caregivers.
Behavioral economics can guide the design of an appropriate end-to-end solution. A blend of carrot-and-stick approach is known to work better than just the stick, and blatant reminders are less effective than gentle nudges in capturing users’ attention. Frequently evaluating human factors throughout the development process will help confirm that you are on the right track and can increase chances of successful adoption. Formative studies with interim versions of the intended solution can show how users relate to what you are building. Besides, a full human factors analysis for the end-to-end solution (including the app and perhaps even the back end) is required for FDA approval anyway.
Develop the technology
A connected system requires right platform and a robust, scalable architecture for it. Correctly partitioning functionality can simplify the regulatory process as well as future product iterations and upgrades. Make hardware choices considering the long approval cycle and time to market, and consider various strategies to reduce unnecessary churn, including planning for drop-in replacements and choosing reliable suppliers known for long-term support.
If connectivity is being added to an existing approved medical device, determine upfront whether the design will impose constraints that prevent accurate capture of signals or pose challenges for the electronics (and battery) for key features to deliver a good user experience. For handheld wireless devices, power budgets tend to minimize device size (batteries tend to dictate device size), so appropriate choice of technology, components, and low-power electronics design are critical.
A strong, long-term strategy and solution roadmap should be put in place prior to making platform decisions or embarking on any design/development, and then revisited and updated often.
Often, better power consumption can be achieved via smart software design. To ensure communications reliability, pay attention to the antenna design – invest in a custom antenna if size constraints prevent a standard antenna achieving desired performance. Test the performance of body-worn devices in realistic scenarios, not just in free space.
App architecture and design are key aspects of the system – ones that often pose problems because the smartphone platform is not under your control. The radio on a smartphone is controlled by the operating system, so you may not be able to control how it behaves with an app in the background or with other radios running. Especially in the case of iOS, be prepared to compensate for significant constraints.
Finally, request an opinion from regulatory bodies early in the development process on how they will regulate the app. Apps supporting connected drug delivery products are likely to be considered part of the combination product that require development process, verification, and validation.
Partnerships are likely for data infrastructure support. One key decision to be made is selecting between custom development versus an off-the-shelf solution for data handling and service infrastructure. There are pros and cons of both – the right choice for you will depend on your longer-term ambition. Make this decision early and ideally with the help of an independent, well-informed team. Picking the right partners who share your vision and are vested for the long term is key. Access and ownership of data often tends to be a sticking point.
Connected systems will continually evolve. Software and services will need to be iterated even if the device stays the same, so agree on a minimally viable solution, launch as quickly as possible, and learn from real-world experience. Clinical trials and pilots are controlled settings and will never provide real insights that can be gained from market launch, even on a limited scale. Technology will change sooner than you anticipate – plan for it and use it to your advantage.
Connected systems can add a lot of value, improve adherence to therapy, enable better chronic disease management, and improve long-term outcomes. But solutions need to be designed carefully, deployed smartly, and adopted by users and clinicians.
We are seeing signs that patient-generated data (PGD) will soon be accepted within mainstream care. The Office of the National Coordinator for Health Information Technology (ONC) contracted Accenture earlier this year to develop a framework for PGD in care delivery – one that will address issues around testing data reliability, authenticity, etc. Healthcare delivery as we’ve known it will soon change – and connected medical systems will have a big hand in this transformation.
About the author: Vaishali Kamat is the head of digital health at Cambridge Consultants where she focuses on product design and development for the digital side of health. She can be reached at cambridgeconsultants@marchcomms.com.
Speeding development of 3D printed manufacturing tools
Departments - 3D/Additive Manufacturing
The Manufacturing Aids Package for the Fortus 900mc production 3D printer supports custom tools on demand.
Custom 3D-printed jigs and fixtures show how additive manufacturing can augment conventional production environments. Stratasys’ Manufacturing Aids Package includes 40 hours of design work from Stratasys Professional Services to make producing a first tool easy.
To create strong, lightweight tools, the kit includes six canisters of thermoplastic build material and three canisters of support material. Build material includes Nylon 6 – Stratasys’ newest engineering-grade material – as well as PC and ASA plastic. ASA is available in a choice of 10 colors. Also included is Stratasys’ SR-35 advanced soluble support material that offers faster dissolve time and extended bath life compared to SR-30 soluble support material. Additional items include extra extrusion head tips, build sheets, and the option for Fortus 900mc owners to extend their factory warranty by two years. www.stratasys.com